|
on Market Microstructure |
| By: | Yao Wu |
| Abstract: | Conventional models of matching markets assume that monetary transfers can clear markets by compensating for utility differentials. However, empirical patterns show that such transfers often fail to close structural preference gaps. This paper introduces a market microstructure framework that models matching decisions as a limit order book system with rigid bid ask spreads. Individual preferences are represented by a latent preference state matrix, where the spread between an agent's internal ask price (the unconditional maximum) and the market's best bid (the reachable maximum) creates a structural liquidity constraint. We establish a Threshold Impossibility Theorem showing that linear compensation cannot close these spreads unless it induces a categorical identity shift. A dynamic discrete choice execution model further demonstrates that matches occur only when the market to book ratio crosses a time decaying liquidity threshold, analogous to order execution under inventory pressure. Numerical experiments validate persistent slippage, regional invariance of preference orderings, and high tier zero spread executions. The model provides a unified microstructure explanation for matching failures, compensation inefficiency, and post match regret in illiquid order driven environments. |
| Date: | 2025–11 |
| URL: | https://d.repec.org/n?u=RePEc:arx:papers:2511.20606 |
| By: | Brian Ezinwoke; Oliver Rhodes |
| Abstract: | Modern high-frequency trading (HFT) environments are characterized by sudden price spikes that present both risk and opportunity, but conventional financial models often fail to capture the required fine temporal structure. Spiking Neural Networks (SNNs) offer a biologically inspired framework well-suited to these challenges due to their natural ability to process discrete events and preserve millisecond-scale timing. This work investigates the application of SNNs to high-frequency price-spike forecasting, enhancing performance via robust hyperparameter tuning with Bayesian Optimization (BO). This work converts high-frequency stock data into spike trains and evaluates three architectures: an established unsupervised STDP-trained SNN, a novel SNN with explicit inhibitory competition, and a supervised backpropagation network. BO was driven by a novel objective, Penalized Spike Accuracy (PSA), designed to ensure a network's predicted price spike rate aligns with the empirical rate of price events. Simulated trading demonstrated that models optimized with PSA consistently outperformed their Spike Accuracy (SA)-tuned counterparts and baselines. Specifically, the extended SNN model with PSA achieved the highest cumulative return (76.8%) in simple backtesting, significantly surpassing the supervised alternative (42.54% return). These results validate the potential of spiking networks, when robustly tuned with task-specific objectives, for effective price spike forecasting in HFT. |
| Date: | 2025–12 |
| URL: | https://d.repec.org/n?u=RePEc:arx:papers:2512.05868 |