nep-for New Economics Papers
on Forecasting
Issue of 2024‒05‒20
one paper chosen by
Rob J Hyndman, Monash University


  1. Enhancing Financial Data Visualization for Investment Decision-Making By Nisarg Patel; Harmit Shah; Kishan Mewada

  1. By: Nisarg Patel; Harmit Shah; Kishan Mewada
    Abstract: Navigating the intricate landscape of financial markets requires adept forecasting of stock price movements. This paper delves into the potential of Long Short-Term Memory (LSTM) networks for predicting stock dynamics, with a focus on discerning nuanced rise and fall patterns. Leveraging a dataset from the New York Stock Exchange (NYSE), the study incorporates multiple features to enhance LSTM's capacity in capturing complex patterns. Visualization of key attributes, such as opening, closing, low, and high prices, aids in unraveling subtle distinctions crucial for comprehensive market understanding. The meticulously crafted LSTM input structure, inspired by established guidelines, incorporates both price and volume attributes over a 25-day time step, enabling the model to capture temporal intricacies. A comprehensive methodology, including hyperparameter tuning with Grid Search, Early Stopping, and Callback mechanisms, leads to a remarkable 53% improvement in predictive accuracy. The study concludes with insights into model robustness, contributions to financial forecasting literature, and a roadmap for real-time stock market prediction. The amalgamation of LSTM networks, strategic hyperparameter tuning, and informed feature selection presents a potent framework for advancing the accuracy of stock price predictions, contributing substantively to financial time series forecasting discourse.
    Date: 2023–12
    URL: http://d.repec.org/n?u=RePEc:arx:papers:2403.18822&r=for

This nep-for issue is ©2024 by Rob J Hyndman. It is provided as is without any express or implied warranty. It may be freely redistributed in whole or in part for any purpose. If distributed in part, please include this notice.
General information on the NEP project can be found at https://nep.repec.org. For comments please write to the director of NEP, Marco Novarese at <director@nep.repec.org>. Put “NEP” in the subject, otherwise your mail may be rejected.
NEP’s infrastructure is sponsored by the School of Economics and Finance of Massey University in New Zealand.