nep-for New Economics Papers
on Forecasting
Issue of 2024‒04‒08
two papers chosen by
Rob J Hyndman, Monash University

  1. Prediction Of Cryptocurrency Prices Using LSTM, SVM And Polynomial Regression By Novan Fauzi Al Giffary; Feri Sulianta
  2. Enhancing Price Prediction in Cryptocurrency Using Transformer Neural Network and Technical Indicators By Mohammad Ali Labbaf Khaniki; Mohammad Manthouri

  1. By: Novan Fauzi Al Giffary; Feri Sulianta
    Abstract: The rapid development of information technology, especially the Internet, has facilitated users with a quick and easy way to seek information. With these convenience offered by internet services, many individuals who initially invested in gold and precious metals are now shifting into digital investments in form of cryptocurrencies. However, investments in crypto coins are filled with uncertainties and fluctuation in daily basis. This risk posed as significant challenges for coin investors that could result in substantial investment losses. The uncertainty of the value of these crypto coins is a critical issue in the field of coin investment. Forecasting, is one of the methods used to predict the future value of these crypto coins. By utilizing the models of Long Short Term Memory, Support Vector Machine, and Polynomial Regression algorithm for forecasting, a performance comparison is conducted to determine which algorithm model is most suitable for predicting crypto currency prices. The mean square error is employed as a benchmark for the comparison. By applying those three constructed algorithm models, the Support Vector Machine uses a linear kernel to produce the smallest mean square error compared to the Long Short Term Memory and Polynomial Regression algorithm models, with a mean square error value of 0.02. Keywords: Cryptocurrency, Forecasting, Long Short Term Memory, Mean Square Error, Polynomial Regression, Support Vector Machine
    Date: 2024–03
  2. By: Mohammad Ali Labbaf Khaniki; Mohammad Manthouri
    Abstract: This study presents an innovative approach for predicting cryptocurrency time series, specifically focusing on Bitcoin, Ethereum, and Litecoin. The methodology integrates the use of technical indicators, a Performer neural network, and BiLSTM (Bidirectional Long Short-Term Memory) to capture temporal dynamics and extract significant features from raw cryptocurrency data. The application of technical indicators, such facilitates the extraction of intricate patterns, momentum, volatility, and trends. The Performer neural network, employing Fast Attention Via positive Orthogonal Random features (FAVOR+), has demonstrated superior computational efficiency and scalability compared to the traditional Multi-head attention mechanism in Transformer models. Additionally, the integration of BiLSTM in the feedforward network enhances the model's capacity to capture temporal dynamics in the data, processing it in both forward and backward directions. This is particularly advantageous for time series data where past and future data points can influence the current state. The proposed method has been applied to the hourly and daily timeframes of the major cryptocurrencies and its performance has been benchmarked against other methods documented in the literature. The results underscore the potential of the proposed method to outperform existing models, marking a significant progression in the field of cryptocurrency price prediction.
    Date: 2024–03

This nep-for issue is ©2024 by Rob J Hyndman. It is provided as is without any express or implied warranty. It may be freely redistributed in whole or in part for any purpose. If distributed in part, please include this notice.
General information on the NEP project can be found at For comments please write to the director of NEP, Marco Novarese at <>. Put “NEP” in the subject, otherwise your mail may be rejected.
NEP’s infrastructure is sponsored by the School of Economics and Finance of Massey University in New Zealand.