nep-ino New Economics Papers
on Innovation
Issue of 2006‒06‒24
nine papers chosen by
Koen Frenken
Universiteit Utrecht

  1. How do public laboratories collaborate with industry? New survey evidence from France By John Gabriel Goddard; Marc Isabelle
  2. Technology Sourcing Through Acquisitions – Do High Quality Patents Attract Acquires? By Jyrki Ali-Yrkkö
  3. Productivity Growth in Backward Economies and the Role of Barriers to Technology Adoption By Hildegunn Ekroll Stokke
  4. Energy prices, production and the adoption of cogeneration in the UK and the Netherlands By David Bonilla;
  5. An Exploration of Technology Diffusion By Diego Comin; Bart Hobiijn
  6. R&D Expenditures for the U.S.: A Frascati to System of National Accounts Application to U.S. Data By Carol A. Robbins
  7. International Trade and Economic Growth: A Possible Methodology for Estimating Cross-Border R&D Spillovers By Lawrence R. McNeil; Barbara M. Fraumeni
  8. Foreign Direct Investment and R&D offshoring By Hans Gersbach; Armin Schmutzler
  9. Les nanotechnologies: bénéfices et risques potentiels By Bernard Sinclair-Desgagné; Dina Feigenbaum; Albert Nsamirizi

  1. By: John Gabriel Goddard (IMRI (Institut pour le Management de la Recherche et de l’Innovation), Université Paris-Dauphine); Marc Isabelle (CEA & IMRI (Institut pour le Management de la Recherche et de l’Innovation), Université Paris-Dauphine)
    Abstract: This paper uses a survey of 130 public laboratories in France to investigate collaborative activities of laboratories with industry. Our statistical analysis shows that knowledge and technology development and transfer occurs most frequently through collaborative and contract research, informal exchanges, conferences, and consortia. The main benefits from the perspective of laboratories are the tangible and intangible inputs received –funds, materials, research suggestions and data. The outputs of collaboration are most often theses and publications along with technological artefacts (new products & processes, software) while patents, licenses and copyrights are less frequent. Collaboration with industry leads laboratories to conduct research in a more timely and reliable way, as well as focused in more applied areas.
    Keywords: university-industry collaborations, knowledge and technology transfer, public-private research partnerships, economics of science, France
    JEL: L33 O31 O32
    Date: 2006–04
    URL: http://d.repec.org/n?u=RePEc:imr:wpaper:wp06_02&r=ino
  2. By: Jyrki Ali-Yrkkö
    Keywords: acquisition, M&A, patent, quality, value, target, likelihood
    JEL: F21 F23 G34
    Date: 2006–06–16
    URL: http://d.repec.org/n?u=RePEc:rif:dpaper:1025&r=ino
  3. By: Hildegunn Ekroll Stokke (Department of Economics, Norwegian University of Science and Technology)
    Abstract: We offer a barrier model of growth with a broader understanding of the sources of productivity growth. Organizational change is suggested as an alternative to innovation and technology adoption. Domestic and international barriers (related to the level of human capital and the trade share) determine the timing and pace of technological catch-up, and as opposed to the catchingup hypothesis backward economies may get stuck in a poverty trap. Growth in lagging economies is not driven by adoption of foreign technology due to inappropriateness. The large technological distance forces the economy to rely more on own productivity improvements through organizational change. Trade liberalization in backward economies does not give the expected boost to productivity growth, because of low capability to take advantage of the frontier technology. Economies can escape the poverty trap by reducing trade barriers, but the benefits from an open economy is highest in middle-income economies, which have both the potential and capability to adopt foreign technology.
    Keywords: gold price boom;Dutch disease;trade barriers;fiscal response;deindustrialization
    JEL: O33 O41 O55 Q33
    Date: 2006–05–22
    URL: http://d.repec.org/n?u=RePEc:nst:samfok:7205&r=ino
  4. By: David Bonilla;
    Abstract: This paper investigates economic incentives influencing the adoption of energy saving technology by industry, namely, CHP in UK and Dutch manufacturing sectors. The empirical analysis is based on a cross sectional time series econometric model, and examines how industrial output and historical increases in the price of electricity relative to gas prices, spark the diffusion of CHP. Production and price elasticities are estimated across heterogeneous industrial groups. Using data for 13 manufacturing sectors the model shows that fuel cost savings and industry output impact significantly on CHP uptake. Model outcomes are found to differ depending on the period of estimation and the estimation period is key in determining the impact of gas price and purchased power prices on adoption of CHP.
    Keywords: energy, manufacturing sector, econometric modeling, electricity prices, energy conservation, technology diffusion
    JEL: C23 C50 Q40 L6
    Date: 2006–06
    URL: http://d.repec.org/n?u=RePEc:cam:camdae:0646&r=ino
  5. By: Diego Comin; Bart Hobiijn
    Abstract: We develop and estimate a model where technology diffusion depends on the level of productivity embodied in capital and where this is, in turn, determined by two key mechanisms: the rate at which the quality embodied in new technology vintages increases (embodiment) and the gains from varieties induced by the introduction of new vintages (variety). In our model, these two effects are related to technology adoption decisions taken at two different levels. The capital goods suppliers’ decisions of when to adopt a given vintage determines the embodiment margin. The workers’ decisions of which of the adopted vintages to use in production determines the variety margin. Estimation of our model for a sample of 19 technologies, 21 countries, and the period 1870-1998 reveals that embodied productivity growth is large for many of the technologies in our sample. On average, increases in the variety of vintages available is a more important source of growth than the increases in the embodiment margin. There is, however, substantial heterogeneity across technologies. Where adoption lags matter, they are largely determined by lack of educational attainment and lack of trade openness.
    JEL: E13 O14 O33 O41
    Date: 2006–06
    URL: http://d.repec.org/n?u=RePEc:nbr:nberwo:12314&r=ino
  6. By: Carol A. Robbins (Bureau of Economic Analysis)
    Abstract: This paper translates research and development expenditure data organized based on the Frascati Manual for the U.S. to a measure of gross output consistent with The System of National Accounts 1993. A set of detailed tables translates U.S. survey data on the performance of R&D from the National Science Foundation for 2001.
    JEL: E60
    Date: 2006
    URL: http://d.repec.org/n?u=RePEc:bea:wpaper:0032&r=ino
  7. By: Lawrence R. McNeil; Barbara M. Fraumeni (Bureau of Economic Analysis)
    Abstract: The Bureau of Economic Analysis (BEA) has initiated a National Science Foundation (NSF) funded project to produce an official BEA/NSF R&D Satellite Account (R&DSA). This paper presents a possible trade-based methodology for estimating cross-border R&D spillovers, which reflects an important component of the overall project because spillovers may be formally integrated into the official BEA/NSF R&DSA. Beginning with Coe and Helpman (1995), we evaluate four methodologies used to estimate the impact of international R&D spillovers on economic growth and select Xu and Wang (1999) as the model most appropriate for calculating net outward spillovers. Based on our calculations, we conclude that including cross-border R&D spillovers would increase 1990 U.S. Gross Domestic Product by 0.33%.
    JEL: E60
    Date: 2005–03
    URL: http://d.repec.org/n?u=RePEc:bea:wpaper:0022&r=ino
  8. By: Hans Gersbach (Alfred-Weber-Institut, Department of Economics, University of Heidelberg); Armin Schmutzler (Socioeconomic Institute, University of Zurich)
    Abstract: We analyze a two-country model of Foreign Direct Investment (FDI). Two firms, each of which is originally situated in only one of the two countries, first decide whether to build a plant in the foreign country. Then, they decide whether to relocate R&D activities. Finally, they engage in product-market competition. Our main points are: first, FDI liberalization causes a relocation of R&D activities if intrafirm communication is sufficiently well developed, external spillovers are substantial, competition is not too strong and foreign markets are not too small. Second, such a relocation of R&D activities will usually nevertheless increase domestic welfare since it only occurs if intrafirm communication is well developed and therefore knowledge generated and obtained abroad flows back to the domestic country. Third, the potential of R&D offshoring makes FDI itself more likely. Fourth, when countries are asymmetric, the small-country firm is more likely to offshore its R&D activities into the large country than conversely.
    Keywords: Foreign Direct Investment, R&D, Spillovers, Research Relocation
    JEL: F23 O30
    Date: 2006–06
    URL: http://d.repec.org/n?u=RePEc:soz:wpaper:0606&r=ino
  9. By: Bernard Sinclair-Desgagné; Dina Feigenbaum; Albert Nsamirizi
    Abstract: <P><div style="text-align:justify"> Ce rapport CIRANO est une introduction aux problématiques des nanotechnologies. Le but est de faire un survol de la question, de définir ce qu’est la nanotechnologie, d’évaluer sa portée en termes d’applications, d’en connaître les principaux acteurs et de pouvoir se faire une idée des dangers potentiels que pourrait comporter ce domaine en effervescence. Ce texte est cependant loin de constituer un rapport complet sur la question tellement celle-ci est vaste et en expansion.<p> Les nanotechnologies représentent vraisemblablement le nerf de la prochaine révolution technologique. En émergence depuis la fin des années 90, leurs percées vont bouleverser tous les champs technologiques et scientifiques. Les nanotechnologies et les nanosciences ont la particularité scientifique par rapport aux autres champs que celles-ci opèrent à des dimensions nanométriques, où la matière que l’on manipule présente de nouvelles propriétés jusqu’alors inutilisées. Le succès de recherches dans le domaine des nanotechnologies ne peut par contre résulter que de la convergence des efforts de plusieurs acteurs opérant dans différentes disciplines scientifiques et technologiques (informatique, mathématiques, génie, chimie, physique, biologie, etc.).<p> Les différentes applications en nanotechnologies peuvent être regroupées en trois principaux champs: les nanomatériaux, la nanoélectronique et les nanobiotechnologies.<p> Les nanomatériaux représentent le domaine d’application le plus prometteur en matière de commercialisation à court terme. En agissant directement sur l’assemblage des particules formant certains matériaux conventionnels, on est capable d’en améliorer considérablement les propriétés physiques (comme la résistance ou la conductivité).<p> En nanoélectronique, les limites de miniaturisation que connaîtront bientôt les techniques habituelles de photolithographie seront dépassées grâce à une série de techniques nouvelles, certaines plus prometteuses que d’autres. Les transformations dans le domaine de l’électronique qui découleront de ces percées seront radicales (nanorobots, bionique, etc.). Les nanotechnologies sont enfin porteuses de nombreuses promesses pour la santé humaine. Elles permettront en effet d’observer la nature de plus près (de l’intérieur même des cellules) afin de corriger ses disfonctionnements (qu’on pense, par exemple, à des nanorobots agissant dans nos artères comme des plombiers capables de prévenir l’engorgement des conduits en détruisant le cholestérol).<p> Toute nouveauté comporte cependant des aspects moins roses. Comme l’état d’avancement des nanosciences et des nanotechnologies ne permet pas encore d’en connaître et bien évaluer les dangers, la tendance actuelle est de minimiser ceux-ci, étant donné l’ampleur des applications envisagées. Le problème est néanmoins soulevé de plus en plus souvent dans la communauté scientifique. En matière d’environnement, les risques potentiels seraient liés au fait que le marché pourra mettre en circulation des nanomatériaux aux propriétés certes avantageuses, mais dont la contrepartie serait l’absence de techniques de recyclage testées et approuvées. La production et l’entreposage des nouveaux matériaux sont aussi sujets à risques, étant donné la réactivité accrue de certains d’entre eux. Dans le domaine de la santé, quelques analyses de risque ont été menées. La principale difficulté de ce genre d’étude vient du fait que la grande diversité de nanomatériaux déjà existants fait qu’il n’y aura pas de diagnostic uniforme. Des tests ont ainsi été effectués sur des rats en laboratoire pour évaluer les effets des nanotubes de carbone sur la santé, et les conclusions ne sont pas unanimes. Il reste donc encore beaucoup de travail à faire. Quoi qu’il en soit, on peut d’ores et déjà anticiper que l’analyse des impacts sur l’environnement et la santé humaine des nanoproduits devra se fonder sur une approche holistique qui tienne compte de l’ensemble du cycle de vie du produit ou du procédé.<p> En somme, les nanotechnologies sont une innovation radicale qui transformera éventuellement maints aspects de la vie économique, et qui pourrait aider à tracer la voie du développement durable. Il est toutefois nécessaire d’améliorer rapidement l’analyse des risques liés à ces technologies, afin d’éviter des écueils similaires à ceux qui entravent toujours le développement de certaines autres technologies (par exemple, celles qui découlent du génie génétique).</div>
    Date: 2006–05–01
    URL: http://d.repec.org/n?u=RePEc:cir:cirbur:2006rb-02&r=ino

This nep-ino issue is ©2006 by Koen Frenken. It is provided as is without any express or implied warranty. It may be freely redistributed in whole or in part for any purpose. If distributed in part, please include this notice.
General information on the NEP project can be found at http://nep.repec.org. For comments please write to the director of NEP, Marco Novarese at <director@nep.repec.org>. Put “NEP” in the subject, otherwise your mail may be rejected.
NEP’s infrastructure is sponsored by the School of Economics and Finance of Massey University in New Zealand.