nep-for New Economics Papers
on Forecasting
Issue of 2023‒08‒21
three papers chosen by
Rob J Hyndman
Monash University

  1. Comparative Analysis of Machine Learning, Hybrid, and Deep Learning Forecasting Models Evidence from European Financial Markets and Bitcoins By Apostolos Ampountolas
  2. Supervised Dynamic PCA: Linear Dynamic Forecasting with Many Predictors By Zhaoxing Gao; Ruey S. Tsay
  3. Harnessing the Potential of Volatility: Advancing GDP Prediction By Ali Lashgari

  1. By: Apostolos Ampountolas
    Abstract: This study analyzes the transmission of market uncertainty on key European financial markets and the cryptocurrency market over an extended period, encompassing the pre, during, and post-pandemic periods. Daily financial market indices and price observations are used to assess the forecasting models. We compare statistical, machine learning, and deep learning forecasting models to evaluate the financial markets, such as the ARIMA, hybrid ETS-ANN, and kNN predictive models. The study results indicate that predicting financial market fluctuations is challenging, and the accuracy levels are generally low in several instances. ARIMA and hybrid ETS-ANN models perform better over extended periods compared to the kNN model, with ARIMA being the best-performing model in 2018-2021 and the hybrid ETS-ANN model being the best-performing model in most of the other subperiods. Still, the kNN model outperforms the others in several periods, depending on the observed accuracy measure. Researchers have advocated using parametric and non-parametric modeling combinations to generate better results. In this study, the results suggest that the hybrid ETS-ANN model is the best-performing model despite its moderate level of accuracy. Thus, the hybrid ETS-ANN model is a promising financial time series forecasting approach. The findings offer financial analysts an additional source that can provide valuable insights for investment decisions.
    Date: 2023–07
    URL: http://d.repec.org/n?u=RePEc:arx:papers:2307.08853&r=for
  2. By: Zhaoxing Gao; Ruey S. Tsay
    Abstract: This paper proposes a novel dynamic forecasting method using a new supervised Principal Component Analysis (PCA) when a large number of predictors are available. The new supervised PCA provides an effective way to bridge the gap between predictors and the target variable of interest by scaling and combining the predictors and their lagged values, resulting in an effective dynamic forecasting. Unlike the traditional diffusion-index approach, which does not learn the relationships between the predictors and the target variable before conducting PCA, we first re-scale each predictor according to their significance in forecasting the targeted variable in a dynamic fashion, and a PCA is then applied to a re-scaled and additive panel, which establishes a connection between the predictability of the PCA factors and the target variable. Furthermore, we also propose to use penalized methods such as the LASSO approach to select the significant factors that have superior predictive power over the others. Theoretically, we show that our estimators are consistent and outperform the traditional methods in prediction under some mild conditions. We conduct extensive simulations to verify that the proposed method produces satisfactory forecasting results and outperforms most of the existing methods using the traditional PCA. A real example of predicting U.S. macroeconomic variables using a large number of predictors showcases that our method fares better than most of the existing ones in applications. The proposed method thus provides a comprehensive and effective approach for dynamic forecasting in high-dimensional data analysis.
    Date: 2023–07
    URL: http://d.repec.org/n?u=RePEc:arx:papers:2307.07689&r=for
  3. By: Ali Lashgari
    Abstract: This paper presents a novel machine learning approach to GDP prediction that incorporates volatility as a model weight. The proposed method is specifically designed to identify and select the most relevant macroeconomic variables for accurate GDP prediction, while taking into account unexpected shocks or events that may impact the economy. The proposed method's effectiveness is tested on real-world data and compared to previous techniques used for GDP forecasting, such as Lasso and Adaptive Lasso. The findings show that the Volatility-weighted Lasso method outperforms other methods in terms of accuracy and robustness, providing policymakers and analysts with a valuable tool for making informed decisions in a rapidly changing economic environment. This study demonstrates how data-driven approaches can help us better understand economic fluctuations and support more effective economic policymaking. Keywords: GDP prediction, Lasso, Volatility, Regularization, Macroeconomics Variable Selection, Machine Learning JEL codes: C22, C53, E37.
    Date: 2023–06
    URL: http://d.repec.org/n?u=RePEc:arx:papers:2307.05391&r=for

This nep-for issue is ©2023 by Rob J Hyndman. It is provided as is without any express or implied warranty. It may be freely redistributed in whole or in part for any purpose. If distributed in part, please include this notice.
General information on the NEP project can be found at http://nep.repec.org. For comments please write to the director of NEP, Marco Novarese at <director@nep.repec.org>. Put “NEP” in the subject, otherwise your mail may be rejected.
NEP’s infrastructure is sponsored by the School of Economics and Finance of Massey University in New Zealand.