nep-for New Economics Papers
on Forecasting
Issue of 2023‒07‒17
three papers chosen by
Rob J Hyndman
Monash University

  1. Making forecasting self-learning and adaptive -- Pilot forecasting rack By Shaun D'Souza; Dheeraj Shah; Amareshwar Allati; Parikshit Soni
  2. Colombian inflation forecast using Long Short-Term Memory approach By Julián Alonso Cárdenas-Cárdenas; Deicy J. Cristiano-Botia; Nicolás Martínez-Cortés
  3. Global grain supply forecasting By Ac-Pangan, Walter; Hendricks, Nathan P.; Zereyesus, Yacob A.; Kee, Jennifer Y.; Jelliffe, Jeremy L.; Morgan, Stephen N.; Cardell, Lila; Nava, Noé J.

  1. By: Shaun D'Souza; Dheeraj Shah; Amareshwar Allati; Parikshit Soni
    Abstract: Retail sales and price projections are typically based on time series forecasting. For some product categories, the accuracy of demand forecasts achieved is low, negatively impacting inventory, transport, and replenishment planning. This paper presents our findings based on a proactive pilot exercise to explore ways to help retailers to improve forecast accuracy for such product categories. We evaluated opportunities for algorithmic interventions to improve forecast accuracy based on a sample product category, Knitwear. The Knitwear product category has a current demand forecast accuracy from non-AI models in the range of 60%. We explored how to improve the forecast accuracy using a rack approach. To generate forecasts, our decision model dynamically selects the best algorithm from an algorithm rack based on performance for a given state and context. Outcomes from our AI/ML forecasting model built using advanced feature engineering show an increase in the accuracy of demand forecast for Knitwear product category by 20%, taking the overall accuracy to 80%. Because our rack comprises algorithms that cater to a range of customer data sets, the forecasting model can be easily tailored for specific customer contexts.
    Date: 2023–06
    URL: http://d.repec.org/n?u=RePEc:arx:papers:2306.07305&r=for
  2. By: Julián Alonso Cárdenas-Cárdenas; Deicy J. Cristiano-Botia; Nicolás Martínez-Cortés
    Abstract: We use Long Short Term Memory (LSTM) neural networks, a deep learning technique, to forecast Colombian headline inflation one year ahead through two approaches. The first one uses only information from the target variable, while the second one incorporates additional information from some relevant variables. We employ sample rolling to the traditional neuronal network construction process, selecting the hyperparameters with criteria for minimizing the forecast error. Our results show a better forecasting capacity of the network with information from additional variables, surpassing both the other LSTM application and ARIMA models optimized for forecasting (with and without explanatory variables). This improvement in forecasting accuracy is most pronounced over longer time horizons, specifically from the seventh month onwards. **** RESUMEN: A través de dos enfoques utilizamos redes neuronales Long Short-Term Memory (LSTM), una técnica de aprendizaje profundo, para pronosticar la inflación en Colombia con un horizonte de doce meses. El primer enfoque emplea solo información de la variable objetivo, la inflación, mientras que el segundo incorpora información adicional proveniente de algunas variables relevantes. Utilizamos rolling sample dentro del proceso tradicional de construcción de las redes neuronales, seleccionando los hiperparámetros con criterios de minimización del error de pronóstico. Nuestros resultados muestran una mejor capacidad de pronóstico de la red bajo el segundo enfoque, superando al primer enfoque y a modelos ARIMA optimizados para pronóstico (con y sin variables explicativas). Esta mejora en la capacidad de pronóstico es más pronunciada en horizontes más largos, específicamente entre el séptimo y doceavo mes.
    Keywords: Deep learning, Long Short Term Memory neural networks, forecast, inflation, Aprendizaje profundo, redes neuronales Long Short-Term Memory, pronóstico, inflación
    JEL: C45 C51 C52 C53 C61 E37
    Date: 2023–06
    URL: http://d.repec.org/n?u=RePEc:bdr:borrec:1241&r=for
  3. By: Ac-Pangan, Walter; Hendricks, Nathan P.; Zereyesus, Yacob A.; Kee, Jennifer Y.; Jelliffe, Jeremy L.; Morgan, Stephen N.; Cardell, Lila; Nava, Noé J.
    Keywords: Marketing, Production Economics, Research Methods/Statistical Methods
    Date: 2023
    URL: http://d.repec.org/n?u=RePEc:ags:aaea22:335783&r=for

This nep-for issue is ©2023 by Rob J Hyndman. It is provided as is without any express or implied warranty. It may be freely redistributed in whole or in part for any purpose. If distributed in part, please include this notice.
General information on the NEP project can be found at http://nep.repec.org. For comments please write to the director of NEP, Marco Novarese at <director@nep.repec.org>. Put “NEP” in the subject, otherwise your mail may be rejected.
NEP’s infrastructure is sponsored by the School of Economics and Finance of Massey University in New Zealand.