nep-for New Economics Papers
on Forecasting
Issue of 2022‒12‒19
four papers chosen by
Rob J Hyndman
Monash University

  1. Forecasting Bitcoin volatility spikes from whale transactions and CryptoQuant data using Synthesizer Transformer models By Dorien Herremans; Kah Wee Low
  2. Simulation-based Forecasting for Intraday Power Markets: Modelling Fundamental Drivers for Location, Shape and Scale of the Price Distribution By Simon Hirsch; Florian Ziel
  3. On the application of Machine Learning in telecommunications forecasting: A comparison By Petre, Konstantin; Varoutas, Dimitris
  4. FinBERT-LSTM: Deep Learning based stock price prediction using News Sentiment Analysis By Shayan Halder

  1. By: Dorien Herremans; Kah Wee Low
    Abstract: The cryptocurrency market is highly volatile compared to traditional financial markets. Hence, forecasting its volatility is crucial for risk management. In this paper, we investigate CryptoQuant data (e.g. on-chain analytics, exchange and miner data) and whale-alert tweets, and explore their relationship to Bitcoin's next-day volatility, with a focus on extreme volatility spikes. We propose a deep learning Synthesizer Transformer model for forecasting volatility. Our results show that the model outperforms existing state-of-the-art models when forecasting extreme volatility spikes for Bitcoin using CryptoQuant data as well as whale-alert tweets. We analysed our model with the Captum XAI library to investigate which features are most important. We also backtested our prediction results with different baseline trading strategies and the results show that we are able to minimize drawdown while keeping steady profits. Our findings underscore that the proposed method is a useful tool for forecasting extreme volatility movements in the Bitcoin market.
    Date: 2022–10
    URL: http://d.repec.org/n?u=RePEc:arx:papers:2211.08281&r=for
  2. By: Simon Hirsch; Florian Ziel
    Abstract: During the last years, European intraday power markets have gained importance for balancing forecast errors due to the rising volumes of intermittent renewable generation. However, compared to day-ahead markets, the drivers for the intraday price process are still sparsely researched. In this paper, we propose a modelling strategy for the location, shape and scale parameters of the return distribution in intraday markets, based on fundamental variables. We consider wind and solar forecasts and their intraday updates, outages, price information and a novel measure for the shape of the merit-order, derived from spot auction curves as explanatory variables. We validate our modelling by simulating price paths and compare the probabilistic forecasting performance of our model to benchmark models in a forecasting study for the German market. The approach yields significant improvements in the forecasting performance, especially in the tails of the distribution. At the same time, we are able to derive the contribution of the driving variables. We find that, apart from the first lag of the price changes, none of our fundamental variables have explanatory power for the expected value of the intraday returns. This implies weak-form market efficiency as renewable forecast changes and outage information seems to be priced in by the market. We find that the volatility is driven by the merit-order regime, the time to delivery and the closure of cross-border order books. The tail of the distribution is mainly influenced by past price differences and trading activity. Our approach is directly transferable to other continuous intraday markets in Europe.
    Date: 2022–11
    URL: http://d.repec.org/n?u=RePEc:arx:papers:2211.13002&r=for
  3. By: Petre, Konstantin; Varoutas, Dimitris
    Abstract: Over the past few decades, a large number of research papers has published focused on forecasting ICT products using various diffusion models like logistic, Gompertz, Bass, etc. Much less research work has been done towards the application of time series forecasting in ICT such as ARIMA model which seems to be an attractive alternative. More recently with the advancement in computational power, machine learning and artificial intelligence have become popular due to superior performance than classical models in many areas of concern. In this paper, broadband penetration is analysed separately for all OECD countries, trying to figure out which model is superior in most cases and phases in time. Although diffusion models are dedicated for this purpose, the ARIMA model has nevertheless shown an enormous influence as a good alternative in many previous works. In this study, a new approach using LSTM networks stands out to be a promising method for projecting high technology innovations diffusion.
    Keywords: Diffusion models,ARIMA,LSTM,broadband penetration forecasting
    Date: 2022
    URL: http://d.repec.org/n?u=RePEc:zbw:itse22:265665&r=for
  4. By: Shayan Halder
    Abstract: Economy is severely dependent on the stock market. An uptrend usually corresponds to prosperity while a downtrend correlates to recession. Predicting the stock market has thus been a centre of research and experiment for a long time. Being able to predict short term movements in the market enables investors to reap greater returns on their investments. Stock prices are extremely volatile and sensitive to financial market. In this paper we use Deep Learning networks to predict stock prices, assimilating financial, business and technology news articles which present information about the market. First, we create a simple Multilayer Perceptron (MLP) network and then expand into more complex Recurrent Neural Network (RNN) like Long Short Term Memory (LSTM), and finally propose FinBERT-LSTM model, which integrates news article sentiments to predict stock price with greater accuracy by analysing short-term market information. We then train the model on NASDAQ-100 index stock data and New York Times news articles to evaluate the performance of MLP, LSTM, FinBERT-LSTM models using mean absolute error (MAE), mean absolute percentage error (MAPE) and accuracy metrics.
    Date: 2022–11
    URL: http://d.repec.org/n?u=RePEc:arx:papers:2211.07392&r=for

This nep-for issue is ©2022 by Rob J Hyndman. It is provided as is without any express or implied warranty. It may be freely redistributed in whole or in part for any purpose. If distributed in part, please include this notice.
General information on the NEP project can be found at http://nep.repec.org. For comments please write to the director of NEP, Marco Novarese at <director@nep.repec.org>. Put “NEP” in the subject, otherwise your mail may be rejected.
NEP’s infrastructure is sponsored by the School of Economics and Finance of Massey University in New Zealand.