nep-fmk New Economics Papers
on Financial Markets
Issue of 2024–12–23
two papers chosen by
Kwang Soo Cheong, Johns Hopkins University


  1. AI in Investment Analysis: LLMs for Equity Stock Ratings By Kassiani Papasotiriou; Srijan Sood; Shayleen Reynolds; Tucker Balch
  2. News-Driven Stock Price Forecasting in Indian Markets: A Comparative Study of Advanced Deep Learning Models By Kaushal Attaluri; Mukesh Tripathi; Srinithi Reddy; Shivendra

  1. By: Kassiani Papasotiriou; Srijan Sood; Shayleen Reynolds; Tucker Balch
    Abstract: Investment Analysis is a cornerstone of the Financial Services industry. The rapid integration of advanced machine learning techniques, particularly Large Language Models (LLMs), offers opportunities to enhance the equity rating process. This paper explores the application of LLMs to generate multi-horizon stock ratings by ingesting diverse datasets. Traditional stock rating methods rely heavily on the expertise of financial analysts, and face several challenges such as data overload, inconsistencies in filings, and delayed reactions to market events. Our study addresses these issues by leveraging LLMs to improve the accuracy and consistency of stock ratings. Additionally, we assess the efficacy of using different data modalities with LLMs for the financial domain. We utilize varied datasets comprising fundamental financial, market, and news data from January 2022 to June 2024, along with GPT-4-32k (v0613) (with a training cutoff in Sep. 2021 to prevent information leakage). Our results show that our benchmark method outperforms traditional stock rating methods when assessed by forward returns, specially when incorporating financial fundamentals. While integrating news data improves short-term performance, substituting detailed news summaries with sentiment scores reduces token use without loss of performance. In many cases, omitting news data entirely enhances performance by reducing bias. Our research shows that LLMs can be leveraged to effectively utilize large amounts of multimodal financial data, as showcased by their effectiveness at the stock rating prediction task. Our work provides a reproducible and efficient framework for generating accurate stock ratings, serving as a cost-effective alternative to traditional methods. Future work will extend to longer timeframes, incorporate diverse data, and utilize newer models for enhanced insights.
    Date: 2024–10
    URL: https://d.repec.org/n?u=RePEc:arx:papers:2411.00856
  2. By: Kaushal Attaluri; Mukesh Tripathi; Srinithi Reddy; Shivendra
    Abstract: Forecasting stock market prices remains a complex challenge for traders, analysts, and engineers due to the multitude of factors that influence price movements. Recent advancements in artificial intelligence (AI) and natural language processing (NLP) have significantly enhanced stock price prediction capabilities. AI's ability to process vast and intricate data sets has led to more sophisticated forecasts. However, achieving consistently high accuracy in stock price forecasting remains elusive. In this paper, we leverage 30 years of historical data from national banks in India, sourced from the National Stock Exchange, to forecast stock prices. Our approach utilizes state-of-the-art deep learning models, including multivariate multi-step Long Short-Term Memory (LSTM), Facebook Prophet with LightGBM optimized through Optuna, and Seasonal Auto-Regressive Integrated Moving Average (SARIMA). We further integrate sentiment analysis from tweets and reliable financial sources such as Business Standard and Reuters, acknowledging their crucial influence on stock price fluctuations.
    Date: 2024–10
    URL: https://d.repec.org/n?u=RePEc:arx:papers:2411.05788

This nep-fmk issue is ©2024 by Kwang Soo Cheong. It is provided as is without any express or implied warranty. It may be freely redistributed in whole or in part for any purpose. If distributed in part, please include this notice.
General information on the NEP project can be found at https://nep.repec.org. For comments please write to the director of NEP, Marco Novarese at <director@nep.repec.org>. Put “NEP” in the subject, otherwise your mail may be rejected.
NEP’s infrastructure is sponsored by the School of Economics and Finance of Massey University in New Zealand.