|
on Big Data |
By: | Juan Tenorio; Heidi Alpiste; Jakelin Rem\'on; Arian Segil |
Abstract: | In recent years, the use of databases that analyze trends, sentiments or news to make economic projections or create indicators has gained significant popularity, particularly with the Google Trends platform. This article explores the potential of Google search data to develop a new index that improves economic forecasts, with a particular focus on one of the key components of economic activity: private consumption (64\% of GDP in Peru). By selecting and estimating categorized variables, machine learning techniques are applied, demonstrating that Google data can identify patterns to generate a leading indicator in real time and improve the accuracy of forecasts. Finally, the results show that Google's "Food" and "Tourism" categories significantly reduce projection errors, highlighting the importance of using this information in a segmented manner to improve macroeconomic forecasts. |
Date: | 2025–03 |
URL: | https://d.repec.org/n?u=RePEc:arx:papers:2503.21981 |
By: | Shovon Sengupta; Bhanu Pratap; Amit Pawar |
Abstract: | The conventional linear Phillips curve model, while widely used in policymaking, often struggles to deliver accurate forecasts in the presence of structural breaks and inherent nonlinearities. This paper addresses these limitations by leveraging machine learning methods within a New Keynesian Phillips Curve framework to forecast and explain headline inflation in India, a major emerging economy. Our analysis demonstrates that machine learning-based approaches significantly outperform standard linear models in forecasting accuracy. Moreover, by employing explainable machine learning techniques, we reveal that the Phillips curve relationship in India is highly nonlinear, characterized by thresholds and interaction effects among key variables. Headline inflation is primarily driven by inflation expectations, followed by past inflation and the output gap, while supply shocks, except rainfall, exert only a marginal influence. These findings highlight the ability of machine learning models to improve forecast accuracy and uncover complex, nonlinear dynamics in inflation data, offering valuable insights for policymakers. |
Date: | 2025–04 |
URL: | https://d.repec.org/n?u=RePEc:arx:papers:2504.05350 |
By: | Jiayin Liu; Chenglong Zhang |
Abstract: | Auctions are important mechanisms extensively implemented in various markets, e.g., search engines' keyword auctions, antique auctions, etc. Finding an optimal auction mechanism is extremely difficult due to the constraints of imperfect information, incentive compatibility (IC), and individual rationality (IR). In addition to the traditional economic methods, some recently attempted to find the optimal (single) auction using deep learning methods. Unlike those attempts focusing on single auctions, we develop deep learning methods for double auctions, where imperfect information exists on both the demand and supply sides. The previous attempts on single auction cannot directly apply to our contexts and those attempts additionally suffer from limited generalizability, inefficiency in ensuring the constraints, and learning fluctuations. We innovate in designing deep learning models for solving the more complex problem and additionally addressing the previous models' three limitations. Specifically, we achieve generalizability by leveraging a transformer-based architecture to model market participants as sequences for varying market sizes; we utilize the numerical features of the constraints and pre-treat them for a higher learning efficiency; we develop a gradient-conflict-elimination scheme to address the problem of learning fluctuation. Extensive experimental evaluations demonstrate the superiority of our approach to classical and machine learning baselines. |
Date: | 2025–04 |
URL: | https://d.repec.org/n?u=RePEc:arx:papers:2504.05355 |
By: | Anindya Sarkar; G. Vadivu |
Abstract: | This research proposes a cutting-edge ensemble deep learning framework for stock price prediction by combining three advanced neural network architectures: The particular areas of interest for the research include but are not limited to: Variational Autoencoder (VAE), Transformer, and Long Short-Term Memory (LSTM) networks. The presented framework is aimed to substantially utilize the advantages of each model which would allow for achieving the identification of both linear and non-linear relations in stock price movements. To improve the accuracy of its predictions it uses rich set of technical indicators and it scales its predictors based on the current market situation. By trying out the framework on several stock data sets, and benchmarking the results against single models and conventional forecasting, the ensemble method exhibits consistently high accuracy and reliability. The VAE is able to learn linear representation on high-dimensional data while the Transformer outstandingly perform in recognizing long-term patterns on the stock price data. LSTM, based on its characteristics of being a model that can deal with sequences, brings additional improvements to the given framework, especially regarding temporal dynamics and fluctuations. Combined, these components provide exceptional directional performance and a very small disparity in the predicted results. The present solution has given a probable concept that can handle the inherent problem of stock price prediction with high reliability and scalability. Compared to the performance of individual proposals based on the neural network, as well as classical methods, the proposed ensemble framework demonstrates the advantages of combining different architectures. It has a very important application in algorithmic trading, risk analysis, and control and decision-making for finance professions and scholars. |
Date: | 2025–03 |
URL: | https://d.repec.org/n?u=RePEc:arx:papers:2503.22192 |
By: | Andrei Neagu; Fr\'ed\'eric Godin; Leila Kosseim |
Abstract: | Dynamic hedging is a financial strategy that consists in periodically transacting one or multiple financial assets to offset the risk associated with a correlated liability. Deep Reinforcement Learning (DRL) algorithms have been used to find optimal solutions to dynamic hedging problems by framing them as sequential decision-making problems. However, most previous work assesses the performance of only one or two DRL algorithms, making an objective comparison across algorithms difficult. In this paper, we compare the performance of eight DRL algorithms in the context of dynamic hedging; Monte Carlo Policy Gradient (MCPG), Proximal Policy Optimization (PPO), along with four variants of Deep Q-Learning (DQL) and two variants of Deep Deterministic Policy Gradient (DDPG). Two of these variants represent a novel application to the task of dynamic hedging. In our experiments, we use the Black-Scholes delta hedge as a baseline and simulate the dataset using a GJR-GARCH(1, 1) model. Results show that MCPG, followed by PPO, obtain the best performance in terms of the root semi-quadratic penalty. Moreover, MCPG is the only algorithm to outperform the Black-Scholes delta hedge baseline with the allotted computational budget, possibly due to the sparsity of rewards in our environment. |
Date: | 2025–04 |
URL: | https://d.repec.org/n?u=RePEc:arx:papers:2504.05521 |
By: | Alvaro Ortiz; Tomasa Rodrigo; David Sarasa; Pedro Torinos; Sirenia Vazquez |
Abstract: | Using a panel data local projections model and controlling for firm characteristics, procurement bid attributes, and macroeconomic conditions, the study estimates the dynamic effects of procurement awards on new lending, a more precise measure than the change in the stock of credit. The analysis further examines heterogeneity in credit responses based on firm size, industry, credit maturity, and value chain position of the firms. The empirical evidence confirms that public procurement awards significantly increase new lending, with NGEU-funded contracts generating stronger credit expansion than traditional procurement during the recent period. The results show that the impact of NGEU procurement programs aligns closely with historical procurement impacts, with differences driven mainly by lower utilization rates. Moreover, integrating high-frequency financial data with procurement records highlights the potential of Big Data in refining public policy design. |
Date: | 2025–03 |
URL: | https://d.repec.org/n?u=RePEc:arx:papers:2504.01964 |